
A AP-704

Order Number: 272628-001

APPLICATION
NOTE

A Simple DRAM Controller for
25/16 MHz i960® CA/CF
Microprocessors
Rick Schue

i960® Microprocesor Architecture Specialist

February 20, 1995

Intel Corporation
Embedded Processor Division
Mail Stop CH5-233
5000 W. Chandler Blvd.
Chandler, Arizona 85226

A AP-704

iii

A SIMPLE DRAM CONTROLLER FOR
25/16 MHZ i960® CA/CF MICROPROCESSORS

1.0 INTRODUCTION... 1

1.1 Design Goals ... 1

1.2 Page Mode DRAM SIMM Review ... 1

1.3 Burst Capabilities for 32-Bit Bus.. 1

2.0 DRAM CONTROLLER OVERVIEW .. 1

2.1 Control Logic ... 2

2.2 Address Path ... 3

2.3 Data Path... 3

2.4 SIMMS... 3

3.0 THEORY OF OPERATION.. 3

4.0 STATE MACHINE DESCRIPTIONS ... 5

4.1 RAS State Machine ... 5

4.2 MUX State Machine... 8

4.3 CAS State Machines ... 8

4.4 DRDY State Machine .. 10

4.5 CPU_CYC State Machine .. 10

4.6 REF_CYC State Machine.. 11

4.7 REF_REQ State Machine.. 13

4.8 HOLDOFF State Machine ... 13

4.9 Burst Address (DRA0, DRA1) State Machine ... 14

4.10 Refresh Divider State Machine.. 15

4.11 Read Strobe State Machine .. 16

5.0 COMBINATORIAL OUTPUTS ... 17

5.1 I/O Write Strobe... 17

5.2 DRAM Write Enable .. 17

5.3 Transceiver Control ... 17

6.0 CONCLUSION .. 19

7.0 RELATED INFORMATION .. 19

APPENDIX A
PLD EQUATIONS

APPENDIX B
IMPLEMENTATION FOR SPECIFIC PLDs

AP-704 A

iv

FIGURES
Figure 1. Quad-Word Access Example Showing ADS and BLAST Timings.......................... 1
Figure 2. Typical DRAM Controller Design .. 2
Figure 3. Single Word Read and Write Cycles... 4
Figure 4. Quad Word Read Cycle .. 4
Figure 5. CAS-Before-RAS Refresh Cycle... 5
Figure 6. RAS State Machine... 6
Figure 7. RAS State Machine Transitions - Back-to-Back Processor Cycles 7
Figure 8. RAS State Machine Transitions - Processor Cycle Delayed By Refresh................ 7
Figure 9. RAS State Machine Transitions - Refresh Cycles .. 8
Figure 10. MUX State Machine .. 8
Figure 11. CAS State Machines... 9
Figure 12. CAS State Machine Transitions - Processor Cycle... 9
Figure 13. CAS State Machine Transitions - Refresh Cycles .. 10
Figure 14. DRDY State Machine.. 10
Figure 15. CPU_CYC State Machine... 10
Figure 16. CPU_CYC and DRDY State Machine Transitions .. 11
Figure 17. REF_CYC State Machine ... 11
Figure 18. REF_CYC Transitions Where Refresh Cycle Delays Processor Cycle 12
Figure 19. REF_CYC Transitions Where Processor Cycle Delays Refresh 12
Figure 20. REF_REQ State Machine... 13
Figure 21. REF_REQ State Machine Transitions .. 13
Figure 22. HOLDOFF State Machine... 13
Figure 23. HOLDOFF State Machine Transitions .. 14
Figure 24. DRA0, DRA1 State Machine... 15
Figure 25. DRA0, 1 Burst Address State Transitions... 16
Figure 26. RD (Read Strobe) State Machine ... 16
Figure 27. RD State Machine Transitions .. 17
Figure 28. W/R Strobe Generation... 18
Figure 29. Transceiver OE Generation .. 18

TABLES
Table A-1. 33 MHz Simple DRAM Controller PLD Equations... A-1
Table A-2. Signal and Product Term Allocation... A-9
Table B-1. PLD 1 Source Code Table ... B-1
Table B-2. PLD 2 Source Code Table ... B-4
Table B-3. PLD 3 Source Code Table ... B-6

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as provided
in Intel’s Terms and Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product
order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH
trademark or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995

A AP-704

1

1.0 INTRODUCTION

This application note describes a simple DRAM controller
for use with 25 and 16 MHz i960® Cx processors. Other
application notes are available which describe DRAM
controllers for the i960 Cx and Jx processors; see Section
7.0, RELATED INFORMATION for ordering information.

This document contains general DRAM controller theory,
state machine definitions and timing diagrams. It also
contains the PLD equations used to build and test the
prototype design. All timing analysis was verified with
Timing Designer*. PLD equations were implemented in
ABEL* as a device-independent design. Design features
include:

• a simple low-cost non-interleaved design

• an ability to use standard 70 ns DRAM SIMM*

• 2-1-1-1 wait state burst reads

• 2-1-1-1 wait state burst writes

This design was implemented and tested on real hardware.
The timing analysis, schematics and PLD files are available
through Intel’s America’s Application Support BBS, at
(916) 356-3600.

1.1 Design Goals

The primary goal of this design is to implement a single
bank 32-bit DRAM controller with the minimum number of
components, using a conventional 72-pin fast page mode
DRAM SIMM. Such a design may be useful in small
embedded systems where space is at a premium. Accord-
ingly, the controller design avoids such techniques as bank
interleaving, write posting, and parity support. The state
machines require only a 1x frequency clock - no frequency
multipliers or delay elements are needed. As tested, the
controller also generates the basic control signals needed to
support flash memory, SRAM, and I/O peripherals residing
on an 8-bit buffered bus.

Although an Altera* EPX740 FLEXlogic device was used
to design the prototype, none of the advanced features of
the FLEXlogic family were used, making the design easy to
port to other programmable logic families. Appendix B
describes a specific implementation in simple PLDs.

1.2 Page Mode DRAM SIMM Review

Page mode DRAM allows faster memory access by keeping
the same row address while selecting random column

addresses within that row. A new column address is
selected by deasserting CAS while keeping RAS active and
then asserting CAS with the new column address valid to
the DRAM. Page mode operation works very well with
burst buses in which a single address cycle can be followed
by multiple data cycles.

The individual DRAM WE signals are tied to common WE
pin on the SIMM; this requires the use of early write cycles.
In an early write cycle, write data is referenced to the
falling edge of CAS, not the falling edge of WE.

Each SIMM also has four CAS lines, one for every eight
(nine) bits in a 32-bit (36-bit) SIMM module. The four
CAS lines control the writing to individual bytes within
each SIMM.

1.3 Burst Capabilities for 32-Bit Bus

A bus access starts by asserting ADS in the address cycle,
and ends by asserting BLAST in the last data cycle.
Figure 1 shows ADS and BLAST timings for a quad-word
access.

Figure 1. Quad-Word Access Example Showing
ADS and BLAST Timings

2.0 DRAM CONTROLLER OVERVIEW

Figure 2 shows a block diagram of a typical system using
this DRAM controller. The design comprises four distinct
blocks: control logic, address path, data path, and the
DRAM SIMM. This section describes each block.

PCLK

ADS

BLAST

Ta Td0 Td1 Td2 Td3

D31:0 d0 d1 d2 d3

AP-704 A

2

2.1 Control Logic

The controller consists of several state machines
implemented in a programmable logic device (PLD). All
state machines are driven by the processor's 1x PCLK.

Design of this controller began by sketching out the desired
DRAM control signals on paper, using PCLK as a time
base. Individual state machines were then defined by
observing the points on the waveforms where the various
control signals needed to assert and deassert. These
conditions were then recorded as Boolean expressions and
transferred to ABEL syntax.

Rather than creating a large state machine to define
numerous control outputs, this design uses a large number
of simple (two-state) machines — one for each output
signal. This technique was chosen to reduce the number of
PLD resources required.

The DRAM controller performs address decoding
internally. The address bus’ upper three bits determine if a

processor cycle is to be handled by the DRAM controller. If
a finer range is required, additional address bits can be
decoded or an external decoder can be added.

Byte and short writes are supported with individual CAS
signals, one for each byte of the 32-bit memory. Unaccessed
bytes during write cycles see a RAS only refresh cycle. All
write cycles are “early writes”, where WE is asserted prior
to CAS.

Refresh cycles are generated approximately every 15 µs by
dividing down an external 1.8432 MHz baud rate clock.
Other refresh clock frequencies can be accommodated with
minimal changes. CAS before RAS refresh cycles are used.

Wait states are inserted by the DRAM controller by
providing a READY signal to the processor. If additional
ready controls are needed for other peripherals, they can be
externally OR’ed with the DRAM controller’s DRDY
output.

Figure 2. Typical DRAM Controller Design

74F245

i960® Cx
Processor

PLD

FLASH I/O

74F258

READY

DRAM SIMM

ADS

PCLK

REF_CLK

BLAST
BE3:0
WAIT
W/R

DEN

DRA1:0

RAS

CAS(3:0)

WE

RD
WR
OE

DRDY

D31:0

D31:0

A31:2
DRA9:2

OE OE
WE WE

MUX

A AP-704

3

2.2 Address Path

DRAM address multiplexing is provided by two 74F258
quad 2:1 multiplexers. These devices switch the upper 8
bits of the 10-bit DRAM address bus. The lower two
address bits are generated in the PLD to provide faster
column address during the page mode bursts. The address
multiplexers also provide buffering for the capacitive load
of the DRAM SIMM.

Use of larger SIMMs would require an additional 74F258
to switch the extra address lines.

2.3 Data Path

The DRAM data path is unbuffered. All other peripherals in
this example are 8-bit devices and are buffered via a
74F245 transceiver. This eliminates the data buffer delay
from the DRAM-critical path and places it in the slower
(and less critical) I/O path. It also reduces the number of
required 74F245 transceivers. Since the DRAM array is the
only 32-bit device in the design, the DRAM devices see a
very lightly loaded data bus — just the CPU and the
74F245 I/O buffer.

2.4 SIMMS

The SIMM block consists of one standard 72-pin SIMM
socket. This design does not use the x36 SIMM parity bits.
However, the x36 SIMMs are standard for PCs and
workstations; as such, they are readily available. The only
penalty is more loading on the address and control lines due
to the extra DRAM devices of the x36 SIMM.

All address and control lines use series-damping resistors to
control ringing.

3.0 THEORY OF OPERATION

The controller generates the following signals:

• RAS — DRAM row address strobe, active low

• CAS3:0 — Four column address strobes, one for each
byte, active low

• MUX — Control signal for the 74F258 row/column
address multiplexers

• DRDY — READY control to the i960 Cx processor

The DRAM controller uses the processor’s READY signal
to control wait states. The processor’s MCON register is

initialized as follows: NXAD = NXDA = NXDD = 0, READY
enable = 1, Burst Enable = 1.

Figure 3 shows non-burst read and write cycles. The
DRAM controller begins a processor cycle when it sees
ADS and a valid address range on the upper address bits
A31:29. This occurs on the rising edge of PCLK that ends
the address state (Ta) of the bus cycle. On this same edge
RAS is asserted. One clock later the address multiplexer is
switched with the assertion of the MUX signal. On the
following clock one or more of the CAS signals are
asserted, based on which byte enables are driven active.
CAS is low for one clock.

If a burst cycle is requested, CAS is deasserted for one
clock (hence the one wait state) and reasserted for another
clock. This process repeats until BLAST is asserted, as
shown in Figure 4.

Reads and writes are handled exactly the same way by the
RAS and CAS state machines. DRAM WE control is
provided by the processor's W/R.

Refresh cycles, as shown in Figure 5, start with the
assertion of all four CAS's. One clock later RAS is asserted
and, on the following clock, the CAS's are deasserted. On
the next clock RAS is deasserted. To provide ample row
precharge time, a subsequent processor cycle does not start
until RAS is high for at least two clocks. Refresh requests
are recognized during idle bus clocks (Ti) or during the
address state (Ta) that starts a processor cycle. Refresh
requests are given priority over processor requests. Once a
refresh cycle starts, processor requests are delayed until the
refresh completes. An example of this can be seen in
Figure 8.

AP-704 A

4

Figure 3. Single Word Read and Write Cycles

Figure 4. Quad Word Read Cycle

PCLK

ADS

BLAST

 RAS

MUX

CASn

WE

D(31:0)

DRDY

Tw Tw TaTd TwTw TwTa Td TiTi Ti

read write

PCLK

ADS

BLAST

 RAS

MUX

CASn

WE

D(31:0)

DRDY

Tw Tw TwTd TwTd TdTa Tw TiTd Ti

A AP-704

5

Figure 5. CAS-Before-RAS Refresh Cycle

PCLK

REF_REQ

REF_CYC

 RAS

MUX

CASn

WE

 HOLDOFF

 earliest RAS after refresh

refresh cycle

4.0 STATE MACHINE DESCRIPTIONS

This section details the operation of each state machine that
this design uses. All machines are “Mealy” machines, in
which the current output is a function only of current state.
These machines can be easily implemented in the conven-
tional D flip-flop macrocells in common PLDs.

Most state machines in this design have only two states. The
machine transitions from one state to another upon
satisfying a Boolean expression; otherwise, it remains in the
current state. These expressions consist of:

• assertion conditions — the machine transitions from
the deasserted (off) state to the asserted (on) state, and

• deassertion conditions — the machine transitions from
the asserted (on) state to the deasserted (off) state

To illustrate these conditions, several timing diagrams are
shown included in this section. Each equation is tagged with
a number in square brackets “[]”. Use these numbers to
identify the corresponding points in the timing diagrams.

All PLD equations are written in ABEL. APPENDIX A,
PLD EQUATIONS, contains a listing of the PLD equations
file. The state machine transitions described here follow the
ABEL conventions for logic operators.

• ! represents NOT, bit-wise negation

• & represents AND

• # represents OR

All signals appearing in logic equations are assumed to be
active high. Many of the PLD outputs are active low; when
these appear on timing diagrams, the signal names are
denoted with an overline (such as RAS).

4.1 RAS State Machine

The RAS state machine operates in one of two modes: one
for CPU cycles and another for refresh cycles. Two other
state machine inputs are used:

• REF_REQ state machine — indicates that a refresh
request is pending

• REF_CYC state machine — indicates that a refresh
cycle is actually underway

The RAS state machine is responsible for recognizing the
start of processor cycles. When the DRAM controller is idle
(and the RAS precharge time has been met), RAS is
asserted when ADS is asserted and the upper address bits
indicate a DRAM address select:

(ADS & DRAM & !MUX & !REF_REQ)[1]

The !MUX term keeps RAS from being asserted until MUX
is deasserted, which provides the minimum 2 PCLK RAS
precharge time.

The term !REF_REQ keeps a processor cycle from being
recognized when a refresh request is pending, which gives
priority to refresh cycles. However, if the DRAM controller
is running a refresh cycle when this occurs, ADS is no

AP-704 A

6

longer present when the controller needs to start a processor
cycle. To this end, the RAS state machine relies upon
another state machine, CPU_CYC, to “remember” that a
processor cycle has been requested but not yet serviced. To
start processor cycles when this occurs, another assertion
condition is needed:

(CPU_CYC & !REF_CYC)[2]

The !REF_CYC term prevents false triggering of the RAS
state machine during refresh cycles.

RAS deasserts after the last data is transferred, which is
denoted by the processor's BLAST and the DRAM
controller's DRDY being both asserted. DRDY is only
generated during CPU cycles, so no conditioning with
REF_CYC is needed.

(BLAST & DRDY) [3]

During refresh, the CAS state machines start the cycle and
the RAS machine operates as a slave. For a CAS-before-
RAS refresh cycle, RAS is asserted one clock after CAS is
asserted and RAS is deasserted one clock after CAS is
deasserted. Since all four CAS's are asserted during refresh,
only one (in this case CAS0) is needed to trigger the RAS
state machine. The assertion condition during refresh cycles
is:

(CAS0 & REF_CYC) [4]

Deassertion is:

(!CAS0 & REF_CYC) [5]

At this point the two operating modes of the RAS machine
are combined and a single set of assertion/deassertion
equations can be written. Assertion conditions are:

 (ADS & DRAM & !MUX & !REF_REQ) [1]

(CPU_CYC & !REF_CYC) [2]

(CAS0 & REF_CYC) [4]

Deassertion conditions are:

 (BLAST & DRDY) [3]

(!CAS0 & REF_CYC) [5]

The following figures illustrate these conditions superim-
posed on timing diagrams. Figure 7 shows the added wait
state needed for RAS precharge when two CPU cycles
occur back-to-back. Figure 8 shows what happens when a
refresh cycle preempts a CPU cycle. In this case four
additional wait states are inserted. Figure 9 shows refresh
cycles.

Figure 6. RAS State Machine

0

1

 (ADS & DRAM & !MUX & !REF_REQ)
(CPU_CYC & !REF_CYC)
(CAS0 & REF_CYC)

 (BLAST & DRDY)

(!CAS0 & REF_CYC)

A AP-704

7

Figure 7. RAS State Machine Transitions - Back-to-Back Processor Cycles

Figure 8. RAS State Machine Transitions - Processor Cycle Delayed By Refresh

PCLK

ADS

A(31:2)

 CPU_CYC

REF_CYC

REF_REQ

RAS

Tw Tw TaTd TwTw TwTa Td TiTi Ti

BLAST

MUX

CAS

DRDY

(1)

(3)

(2)

(3)

PCLK

ADS

A(31:2)

 CPU_CYC

REF_CYC

RAS

Tw Tw TwTw TwTw TdTa Tw TiTd Ta

BLAST

MUX

CAS

DRDY

(2)

(3)

refresh cycle processor cycle

AP-704 A

8

Figure 9. RAS State Machine Transitions - Refresh Cycles

PCLK

 CPU_CYC

RAS

MUX

CASn

REF_REQ

REF_CYC

HOLDOFF

 refresh cycle

(4) (5)

4.2 MUX State Machine

The MUX state machine delays RAS by one clock. This
switches the address multiplexer from “row” to “column” in
time for the column address to stabilize before CAS asserts.
It also provides an additional timing signal for use in other
state machines; e.g., in the CAS state machine, MUX helps
provide the additional delay clock between RAS and the
assertion of CAS. The assertion condition for MUX is:

(RAS)

The deassertion condition is:

(!RAS)

Figure 10. MUX State Machine

4.3 CAS State Machines

Four nearly-identical CAS state machines (CAS0, CAS1,
CAS2, and CAS3) provide the column address strobes for

0

1

(!RAS) (RAS)

the individual bytes in the DRAM array. They differ only in
which byte enable signal is used to qualify their output.

Like the RAS state machine, the CAS state machines
operate in one of two modes: CPU cycles and refresh
cycles. During CPU cycles, the CAS state machines operate
as a slave to the RAS machine, asserting CAS two clocks
after RAS. The two-clock delay is generated by waiting
until both RAS and MUX are asserted. Thus the assertion
condition for a CPU cycle is:

(RAS & MUX & BEn & !REF_CYC) [6]

where BEn stands for one of the four byte enables: BE0,
BE1, BE2, or BE3. Since CAS is only asserted for a single
clock, CAS is deasserted on the next clock edge. The
deassertion condition is degenerate:

(!REF_CYC) [7]

When it is time to do a refresh, the CAS machines begin the
cycle, the RAS machine acts as a slave. The refresh
arbitration is done in a separate state machine: REF_REQ.
Refresh cycles begin when a refresh request is requested
and the DRAM controller is not running a CPU cycle. This
occurs during the address state (Ta) and idle bus clocks (Ti).
The assertion condition for CAS during refresh is:

(REF_REQ & !CPU_CYC) [8]

The deassertion condition is (see (4) in Figure 13):

(RAS & REF_CYC) [9]

CAS is deasserted one clock after RAS goes low.

A AP-704

9

The CPU refresh modes can now be combined into a single
set to generate the state diagram shown in Figure 11.
Assertion conditions are:

(RAS & MUX & BEn & !REF_CYC) [6]

(REF_REQ & !CPU_CYC) [8]

Deassertion:

(!REF_CYC) [7]

(RAS & REF_CYC) [9]

Figure 11. CAS State Machines

0

1

 (!REF_CYC)
(RAS & REF_CYC)

 (RAS & MUX & BEn & !REF_CYC)

(REF_REQ & !CPU_CYC)

Figure 12. CAS State Machine Transitions - Processor Cycle

PCLK

ADS

A(31:2)

 CPU_CYC

REF_CYC

RAS

Tw Tw TwTd TwTd TdTa Tw T iTd Ta

BLAST

MUX

CAS

DRDY

[6]
[6]

[7] [7]

AP-704 A

10

Figure 13. CAS State Machine Transitions - Refresh Cycles

PCLK

 CPU_CYC

RAS

Td Ta TwTw TwTw TwTw Tw TdTw Ti

MUX

CASn

REF_REQ

REF_CYC

HOLDOFF

[8]

[9]

refresh cycle processor cycle

4.4 DRDY State Machine

The DRDY state machine generates READY for the
processor. DRDY is asserted simultaneously with CAS
during processor cycles. Thus, the DRDY state machine
resembles a CAS machine, except for: DRDY is not
conditioned with byte enables, and it is not asserted during
refresh. Assertion occurs when RAS and MUX are both
active during non-refresh cycles:

(RAS & MUX & !REF_CYC) [10]

Deassertion is one clock later:

(!REF_CYC) [11]

To provide for DRDY deassertion at power-up, and addi-
tional term is added:

RESET

Figure 14. DRDY State Machine

0

1

 (!REF_CYC)
(RESET)

(RAS & MUX & !REF_CYC)

4.5 CPU_CYC State Machine

This machine tracks processor requests to DRAM.
CPU_CYC goes active after the address state (Ta) of a CPU
cycle and goes inactive after the last data state (Td).
CPU_CYC is inactive during Ta and all idle bus clocks (Ti).
Several state machines use CPU_CYC and its “sister”,
REF_CYC, to control their operation.

CPU_CYC is asserted when ADS is active and the upper
three address bits match the DRAM region:

(ADS & DRAM) [12]

It is deasserted when DRDY is returned in the last data
transfer or when RESET is asserted:

(BLAST & DRDY) [13]

Figure 15. CPU_CYC State Machine

0

1

(ADS & DRAM)
 (BLAST & DRDY)
(RESET)

A AP-704

11

Figure 16. CPU_CYC and DRDY State Machine Transitions

PCLK

ADS

A31:2

 CPU_CYC

REF_CYC

RAS

Tw Tw TwTd TwTd TdTa Tw TiTd Ti

BLAST

MUX

CASn

DRDY

[12]

[13]

[10] [10]
[11][11]

4.6 REF_CYC State Machine

The REF_CYC State Machine indicates when the DRAM
controller is performing a refresh cycle. Refresh cycles are
requested by another state machine, the REF_REQ state
machine, every 15 µs. Refresh cycles may begin during any
idle bus clock (Ti) or during the address state (Ta) that starts
a processor bus cycle. If a refresh request occurs during a
processor cycle, REF_CYC is not asserted until the next Ti
or Ta state.

An idle bus and the address state look the same to the
REF_CYC state machine. Both are signified by having
CPU_CYC deasserted.

The assertion conditions for REF_CYC are:

(!CPU_CYCLE & REF_REQ) [14]

REF_CYC is not deasserted until RAS has returned high
after the refresh cycle. Since RAS is high during the first
clock of a refresh cycle, the deassertion condition includes
MUX to keep REF_CYC from going prematurely inactive.
The deassertion conditions are:

(!RAS & MUX) [15]

Figure 18 shows the worst case delay of a processor cycle
due to a DRAM refresh. Figure 19 shows the worst case
delay of a refresh cycle due to a processor cycle.

Figure 17. REF_CYC State Machine

0

1

(!CPU_CYC & REF_REQ) (!RAS & MUX)

AP-704 A

12

Figure 18. REF_CYC Transitions Where Refresh Cycle Delays Processor Cycle

Figure 19. REF_CYC Transitions Where Processor Cycle Delays Refresh

PCLK

 ADS

RAS

Ta Tw TwTw TwTw TwTd Tw TiTd Ti

MUX

CASn

CPU_CYC

REF_REQ

REF_CYC

[14]

[15]

refresh cycle processor
 cycle

PCLK

 ADS

RAS

Tw Tw TaTd TwTw TwTa Tw TwTw Tw

MUX

CASn

CPU_CYC

REF_REQ

REF_CYC

 refresh cycle

[14]

[15]

processor
 cycle

 processor cycle

A AP-704

13

4.7 REF_REQ State Machine

The REF_REQ state machine is an edge-detected version of
the refresh counter’s most significant bit. It is also synchro-
nized to PCLK. REF_REQ is asserted as soon as the
counter (R4) is set and HOLDOFF is deasserted.
HOLDOFF, as shown below, prevents REF_REQ from
being reasserted until R4 changes state. REF_REQ is
deasserted as soon as a refresh cycle is actually started.
Assertion conditions are:

(R4 & !HOLDOFF) [16]

Deassertion conditions are:

(REF_CYC) [17] Figure 20. REF_REQ State Machine

0

1

(R4 & !HOLDOFF) (REF_CYC)

Figure 21. REF_REQ State Machine Transitions

PCLK

R4

REF_REQ

HOLDOFF

RAS

MUX

CASn

 REF_CYC

[16]
[17]

refresh cycle

4.8 HOLDOFF State Machine

As noted in Section 4.7, the HOLDOFF state machine
provides an edge-detect function for the REF_REQ input.
HOLDOFF is asserted during a refresh cycle at the point
when RAS is asserted. HOLDOFF assertion prevents
another refresh cycle from being requested by the
REF_REQ state machine until the refresh timer R4 is
deasserted. Assertion conditions are:

(REF_CYC) [18]

Deassertion conditions are:

(!R4) [19]

Figure 22. HOLDOFF State Machine

0

1

(REF_CYC)(!R4)

AP-704 A

14

Figure 23. HOLDOFF State Machine Transitions

PCLK

R4

REF_REQ

HOLDOFF

RAS

MUX

CASn

 REF_CYC
[18]

[19]

refresh cycle

4.9 Burst Address (DRA0, DRA1) State
Machine

The burst address state machine, one of the more complex
machines in the DRAM controller, is responsible for
generating the two low-order address bits for the DRAM
array. It functions as a multiplexer during the first part of the
cycle to provide processor address bits A12 and A11 as part
of the row address. During the data cycles it provides a
synthesized version of processor bits A3 and A2.
Generating A3 and A2 in the state machine reduces the
delay in the critical path from column address to data out.

The address generation requires a four-state machine to
track the bus cycle, plus some combinatorial logic to
provide the multiplexer function. This combinatorial logic
adds to the normal output valid delay of the state machine,
but is quicker than an external multiplexer. The four states
are:

1. Multiplexer. In this state pass A12 and A11 or A3 and A2
(based on the MUX signal) to the outputs DRA1 and
DRA0.

2. State “1”. Drive DRA1 = 0, DRA0 = 1.

3. State “2”. Drive DRA1 = 1, DRA0 = 0.

4. State “3”: Drive DRA1 = 1, DRA0 = 1.

The “idle” state is the multiplexer state. Transitions between
states must track the type of bus cycle run by the processor
to produce the proper address bits.

Single accesses (bytes, shorts, and words) stay in the
multiplexer state - no burst address generation is needed.

Double word accesses may be to word addresses 0 - 1 or 2 -
3. Double word accesses that start at word address 0 start in
the multiplex state (to allow address 0 to flow through),
move to state “1” to provide word address 1, then return to
the multiplexer state (idle). Accesses that start at word
address 2 jump from the multiplexer state to state “3” before
returning to idle.

Triple word accesses, by definition, always start with word
address 0. They transition from multiplexer state, state “1”,
state “2”, and then back to idle.

Quad word accesses always begin with word address 0 and
cycle though all four states in order.

The machine stays in the multiplexer state until a multi-
word bus cycle is detected (DRDY asserted while BLAST is
deasserted). Based on the state of A3 and A2 during the first
access, it advances to either state “1” or state “3”. While in
state “1” through “3” it returns to the multiplexer state when
the bus cycle ends (DRDY and BLAST asserted).

A AP-704

15

The state machine is defined in a “present state - next state”
syntax as follows:

STATE_MUX:

!A3 & !A2 & DRDY & !BLAST-> STATE_1
 A3 & !A2 & DRDY & !BLAST-> STATE_3
else -> STATE_MUX

STATE_1:

DRDY & !BLAST-> STATE_2
 DRDY & BLAST-> STATE_MUX
else -> STATE_1

STATE_2:

DRDY & !BLAST-> STATE_3
DRDY & BLAST-> STATE_MUX
else -> STATE_2

STATE_3:

DRDY & BLAST-> STATE_MUX
else -> STATE_3

While in the MUX state, DRA1 and DRA0 are either the
row address (A12 and A11) or the column address (A3 and
A2) based on the MUX signal. When in states 1 through 3,
DRA1 and DRA0 are the binary value of those states, as
follows:

DRA1 = (STATE_MUX & !MUX & A12) #
(STATE_MUX & MUX & A3) #

STATE_2 # STATE_3

DRA0 = (STATE_MUX & !MUX & A11) #
(STATE_MUX & MUX & A2) #

STATE_1 # STATE_3

Figure 24. DRA0, DRA1 State Machine

4.10 Refresh Divider State Machine

The 1.8432 MHz baud rate clock is divided by 28 to
produce a REF_REQ with a 15 µs period. This is performed
by a five-bit binary up counter. R4 is the most significant bit
of the counter. See APPENDIX A for details. Use of a
different refresh clock frequency would require adjusting
the division ratio to maintain the 15 µs period.

This state machine may be replaced with an external refresh
timer. In this case, an asynchronous square wave with a
period of 15 µs may be substituted for the R4 input to the
REF_REQ and HOLDOFF state machines.

(DRDY &!BLAST)

(!A3 & !A2 &

MUX

1

2

3

(DRDY &!BLAST)

(A3 & !A2 & DRDY &!BLAST)

DRDY & BLAST)

 (DRDY &BLAST)

AP-704 A

16

Figure 25. DRA0, 1 Burst Address State Transitions

PCLK

ADS

A(31:2)

 RAS

MUX

CAS

Tw Tw TwTd TwTd TdTa Tw TiTd Ta

BLAST

DRDY

DRA (0,1)

 row column

A12, A13 A2, A3 0,1 1,0 1,1

4.11 Read Strobe State Machine

This state machine produces a general-purpose read strobe
(RD) for FLASH memory, SRAM, and other I/O periph-
erals. RD is asserted at the start of all read cycles without
any address qualification. RD is deasserted when BLAST is
issued by the processor. It is assumed that the internal i960
Cx processor’s wait state generator is used to control all
such bus cycles, since no READY is generated by this logic.

RD assertion conditions are:

(ADS & !W/R) [20]

Deassertion conditions are:

(BLAST) [21]

Additionally, RD is deasserted upon power-up by the
RESET signal.

Figure 26. RD (Read Strobe) State Machine

0

1

(ADS & !W/R)

(BLAST) #

(RESET)

A AP-704

17

Figure 27. RD State Machine Transitions

PCLK

ADS

W/R

Tw Tw TdTw TaTi TwTa Tw TdTw Ti

BLAST

RD

 read write

[20] [21]

5.0 COMBINATORIAL OUTPUTS

The few remaining general-purpose controls can be
generated from processor signals with simple combinatorial
logic. Among these are the SRAM and I/O write strobe
(WR), the DRAM write enable (WE), and the transceiver
output enable (245OE).

5.1 I/O Write Strobe

For regions controlled by the internal wait state generator
with more than one wait state, the processor's WAIT signal
can be used to generate a suitable write strobe for I/O
peripherals (see Figure 28):

WR# = (W/R & WAIT)

5.2 DRAM Write Enable

An inverted version of the processor's W/R signal can be
used for this purpose with one modification. Most DRAMs
require that WE is high (deasserted) during refresh cycles.
Since refresh cycles may occur while the processor is
waiting to perform a DRAM access, the state of the W/R
signal cannot be guaranteed. Accordingly W/R needs to be
gated with REF_CYC as follows:

WE# = (W/R & !REF_CYC)

5.3 Transceiver Control

In the tested design, an I/O transceiver isolates the 8-bit I/O
bus from the processor and DRAM array. The 74F245
device requires two controls: a direction select and an
output enable. To eliminate bus contention, the direction
should be changed only when the output enable is
deasserted.

Direction select is taken directly from the processor's DT/R
control. Output enable is generated by a combination of the
processor's DEN signal and an address decode of the upper
address bits. This defines a section of memory that activates
the transceiver, keeping it from interfering with DRAM
cycles.

OE245# = (DEN & IO_DECODE)

AP-704 A

18

Figure 28. W/R Strobe Generation

Figure 29. Transceiver OE Generation

PCLK

ADS

WAIT

Tw Tw TdTw TaTr TwTa Tw TdTw Tr

BLAST

WR

W/R

 read write

PCLK

ADS

WAIT

Tw Tw TdTw TaTr TwTa Tw TdTw Tr

BLAST

W/R

DT/R

OE245

DEN

 read write

A AP-704

19

6.0 CONCLUSION

In conclusion, this application note describes a simple
DRAM controller for use with i960 CA/CF 16/25 MHz
processors. This DRAM controller was built and tested for
validation purposes. The PLD equations used to build and
test the prototype design were created in ABEL. All timing
analysis was verified with Timing Designer. Schematics
were created with OrCAD. The timing analysis, schematics
and PLD files are available through Intel’s America’s
Application Support BBS.

7.0 RELATED INFORMATION

This application note is one of four that are related to
DRAM controllers for the i960 processors. The following
table shows the documents and order numbers:

To receive these documents or any other available Intel
literature, contact:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect IL 60056-7641
1-800-879-4683

To receive files that contain the timing analysis, schematics
and PLD equations for this and the other DRAM controller
application notes, contact:

Intel Corporation
America’s Application Support BBS
916-356-3600

Document Name App.
Note #

Order
#

DRAM Controller for the 40 MHz i960®
CF Microprocessors AP-706 272655

DRAM Controller for the i960® Jx Micro-
processors AP-712 272674

DRAM Controller for 33 MHz i960®
CA/CF Microprocessors AP-703 272627

A AP-704

A-1

APPENDIX A
PLD EQUATIONS

Table A-1 contains the PLD equations which were used to build and test the prototype design. Table A-1 defines signal
and product term allocation. The PLD equations were created in ABEL as a device-independent design. Using the ABEL*
software, a PDS file was created and subsequently imported into PLDSHELL* software. PLDSHELL was used to fit the
design into an Altera EPX780 FLEXlogic* PLD. PLDSHELL was also utilized to create the JEDEC file, and to simulate
the design.

In addition, this appendix contains a table listing the number of product terms used by each macrocell.

Table A-1. 33 MHz Simple DRAM Controller PLD Equations (Sheet 1 of 9)

module DRAM
title '960CA DRAM Controller (21121)
Rick Schue Intel Corp. 01/25/95'

 H,L,Ck,X = 1, 0, .C., .X.;

" Device independent design

" input pin assignments

 PCLK pin; " 25.000 MHz clock for state variables
 REFCLK pin; " 1.8432 MHz clock for refresh timer
 !ADS pin; " CPU ADS# control
 !BLAST pin; " CPU BLAST# control
 !RESET pin; " system reset (active low)
 A31 pin; " CPU address lines
 A30 pin; "
 A29 pin; "
 A12 pin; " address lines used to generate
 A11 pin; " DRA1,0
 A3 pin; "
 A2 pin; "
 !BE3 pin; " CPU byte enables
 !BE2 pin; "
 !BE1 pin; "
 !BE0 pin; "
 !READ pin; " CPU W!R# control
 !WAIT pin; " CPU WAIT# control
 !DEN pin; " CPU DEN# control

" output pin assignments
 !RAS pin ISTYPE 'reg'; " DRAM RAS
 !CAS3 pin ISTYPE 'reg'; " DRAM CAS
 !CAS2 pin ISTYPE 'reg'; " DRAM CAS
 !CAS1 pin ISTYPE 'reg'; " DRAM CAS
 !CAS0 pin ISTYPE 'reg'; " DRAM CAS
 DRA1 pin ISTYPE 'com'; " DRAM address outputs (combinatorial)
 DRA0 pin ISTYPE 'com'; " DRAM address outputs (combinatorial)
 !DRDY pin ISTYPE 'reg'; " DRAM ready
 !MUX pin ISTYPE 'reg'; " row/column control: 1=row 0=col
 !WE pin ISTYPE 'com'; " DRAM WE#

AP-704 A

A-2

 !RD pin ISTYPE 'reg'; " I/O READ
 !WR pin ISTYPE 'com'; " I/O WRITE (combinatorial)
 !OE245 pin ISTYPE 'com'; " 74F245 transceiver control for I!O bus

" internal state variables - these do not have to be assigned to pins unless
" one wishes to use them for debug.
 !CPU_CYC node ISTYPE 'reg'; " CPU cycle pending
 !REF_REQ node ISTYPE 'reg'; " refresh request (active low)
 !REF_CYC node ISTYPE 'reg'; " Refresh cycle pending
 !HOLDOFF node ISTYPE 'reg'; " Refresh holdoff
 S1,S0 node ISTYPE 'reg'; " DRA1,0 state bits
 R0,R1,R2,R3,R4 node ISTYPE 'reg'; " Refresh timer (divide by 28)

" region decode:
" to conserve pins in this simple example, addresses are decoded into only
" eight regions.

 MEMADDR = [A31,A30,A29,X, X,X,X,X, X,X,X,X, X,X,X,X,
 X,X,X,X, X,X,X,X, X,X,X,X, X,X,X,X];

" state machine vector definitions
 RAS_MACHINE = [RAS];
 MUX_MACHINE = [MUX];
 CAS0_MACHINE = [CAS0];
 CAS1_MACHINE = [CAS1];
 CAS2_MACHINE = [CAS2];
 CAS3_MACHINE = [CAS3];
 DRDY_MACHINE = [DRDY];
 RD_MACHINE = [RD];
 CPU_CYC_MACHINE = [CPU_CYC];
 REF_REQ_MACHINE = [REF_REQ];
 REF_CYC_MACHINE = [REF_CYC];
 HOLDOFF_MACHINE = [HOLDOFF];
 BURST_MACHINE = [S1,S0];
 REFRESH = [R4,R3,R2,R1,R0];

" literals
 IDLE = ^b0;
 ACTIVE = ^b1;
 STATE_MUX = ^b00;
 STATE_1 = ^b01;
 STATE_2 = ^b10;
 STATE_3 = ^b11;

" modify the following address assignments to relocate IO and/or DRAM into
" other memory regions. In this example:
" DRAM 0xc0000000 to 0xdfffffff
" I/O 0x20000000 to 0x3fffffff (UART)
" 0x60000000 to 0x7fffffff (parallel port)
" 0xe0000000 to 0xffffffff (FLASH boot ROM)

 DRAM = (MEMADDR >= ^hC0000000) & (MEMADDR <= ^hDFFFFFFF);
 IO = ((MEMADDR >= ^h20000000) & (MEMADDR <= ^h3FFFFFFF)) #
 ((MEMADDR >= ^h60000000) & (MEMADDR <= ^h7FFFFFFF)) #
 ((MEMADDR >= ^hE0000000) & (MEMADDR <= ^hFFFFFFFF));

Table A-1. 33 MHz Simple DRAM Controller PLD Equations (Sheet 2 of 9)

A AP-704

A-3

equations

" DRAM burst address multiplexer
" state MUX DRA1 DRA0
" 00 0 A12 A11 pass through ROW address
" 00 1 A3 A2 pass through COL address
" 01 x 0 1 burst address
" 10 x 1 0 burst address
" 11 x 1 1 burst address

 DRA1 = (!S1 & !S0 & !MUX & A12) #
 (!S1 & !S0 & MUX & A3) # (S1 & !S0) # (S1 & S0);
 DRA0 = (!S1 & !S0 & !MUX & A11) #
 (!S1 & !S0 & MUX & A2) # (!S1 & S0) # (S1 & S0);

" simple I/O control signals
 WE = (!READ & !REF_CYC);
 WR = (WAIT & !READ);
 OE245 = (DEN & IO);

" the following state machines are synchronous with the CPU
 RAS.clk = PCLK;
 MUX.clk = PCLK;
 CAS0.clk = PCLK;
 CAS1.clk = PCLK;
 CAS2.clk = PCLK;
 CAS3.clk = PCLK;
 DRDY.clk = PCLK;
 RD.clk = PCLK;
 CPU_CYC.clk = PCLK;
 REF_REQ.clk = PCLK;
 REF_CYC.clk = PCLK;
 HOLDOFF.clk = PCLK;
 [S1,S0].clk = PCLK;

" the refresh divider runs off a second (asynchronous) clock
" if a higher frequency REFCLK is used, more bits may be required here
 [R4,R3,R2,R1,R0].clk = REFCLK;

Table A-1. 33 MHz Simple DRAM Controller PLD Equations (Sheet 3 of 9)

AP-704 A

A-4

"---

state_diagram BURST_MACHINE

" This state machine controls the DRAM A1,A0 multiplexer described
" above in the EQUATIONS section.

 state STATE_MUX:
 if (!A3 & !A2 & DRDY & !BLAST) then STATE_1;
 else if (A3 & !A2 & DRDY & !BLAST) then STATE_3;
 else STATE_MUX;

 state STATE_1:
 if (DRDY & !BLAST) then STATE_2;
 else if (DRDY & BLAST) then STATE_MUX;
 else STATE_1;

 state STATE_2:
 if (DRDY & !BLAST) then STATE_3;
 else if (DRDY & BLAST) then STATE_MUX;
 else STATE_2;

 state STATE_3:
 if (DRDY & BLAST) then STATE_MUX;
 else STATE_3;

"---

state_diagram CPU_CYC_MACHINE

" This machine tracks all DRAM cycles requested by the CPU

 state IDLE:
 if (ADS & DRAM) then ACTIVE;
 else IDLE;

 state ACTIVE:
 if (BLAST & DRDY # RESET) then IDLE;
 else ACTIVE;

Table A-1. 33 MHz Simple DRAM Controller PLD Equations (Sheet 4 of 9)

A AP-704

A-5

"---

state_diagram MUX_MACHINE

" MUX_MACHINE is a delayed version of RAS, used to switch the external row/
" column multiplexer.

 state IDLE:
 if (RAS) then ACTIVE;
 else IDLE;

 state ACTIVE:
 if (!RAS) then IDLE;
 else ACTIVE;

"---

state_diagram RAS_MACHINE

" This generates RAS for a DRAM bank. A single RAS controls all bytes in
" that bank. If additional banks are desired, extra RAS's will have to be
" generated with similar state machines.

 state IDLE:
 if (ADS & DRAM & !MUX & !REF_REQ) #
 (CPU_CYC & !REF_CYC) #
 (REF_CYC & CAS0) then ACTIVE;
 else IDLE;

 state ACTIVE:
 if (BLAST & DRDY) # (REF_CYC & !CAS0) then IDLE;
 else ACTIVE;

"---

state_diagram CAS0_MACHINE

" The following machines generate individual CAS's for each byte of the
" DRAM array. Their only differences are the byte enables that enable them

 state IDLE:
 if (RAS & BE0 & !REF_CYC & MUX) # (REF_REQ & !CPU_CYC) then ACTIVE;
 else IDLE;

 state ACTIVE:
 if (!REF_CYC) # (REF_CYC & RAS) then IDLE;
 else ACTIVE;

Table A-1. 33 MHz Simple DRAM Controller PLD Equations (Sheet 5 of 9)

AP-704 A

A-6

"---

state_diagram CAS1_MACHINE

 state IDLE:
 if (RAS & BE1 & !REF_CYC & MUX) # (REF_REQ & !CPU_CYC) then ACTIVE;
 else IDLE;

 state ACTIVE:
 if (!REF_CYC) # (REF_CYC & RAS) then IDLE;
 else ACTIVE;

"---

state_diagram CAS2_MACHINE

 state IDLE:
 if (RAS & BE2 & !REF_CYC & MUX) # (REF_REQ & !CPU_CYC) then ACTIVE;
 else IDLE;

 state ACTIVE:
 if (!REF_CYC) # (REF_CYC & RAS) then IDLE;
 else ACTIVE;

"---

state_diagram CAS3_MACHINE

 state IDLE:
 if (RAS & BE3 & !REF_CYC & MUX) # (REF_REQ & !CPU_CYC) then ACTIVE;
 else IDLE;

 state ACTIVE:
 if (!REF_CYC) # (REF_CYC & RAS) then IDLE;
 else ACTIVE;

"---

state_diagram DRDY_MACHINE

" This machine generates READY for all DRAM accesses. This output should be
" externally OR'ed with any other external ready type peripherals.

 state IDLE:
 if (RAS & !REF_CYC & MUX) then ACTIVE;
 else IDLE;

 state ACTIVE:
 if (!REF_CYC) # (RESET) then IDLE;
 else ACTIVE;

Table A-1. 33 MHz Simple DRAM Controller PLD Equations (Sheet 6 of 9)

A AP-704

A-7

"---

state_diagram HOLDOFF_MACHINE

" This machine is used to edge detect the square wave refesh request. See
" REF_REQ_MACHINE.

 state IDLE:
 if (REF_CYC) then ACTIVE;
 else IDLE;

 state ACTIVE:
 if (!R4) then IDLE;
 else ACTIVE;

"---

state_diagram REF_REQ_MACHINE

" This machine is used to hold a pending refresh request. R4 is a 65 KHz
" square wave derived from the refresh timer (or some other source).

 state IDLE:
 if (R4 & !HOLDOFF) then ACTIVE;
 else IDLE;

 state ACTIVE:
 if (REF_CYC) then IDLE;
 else ACTIVE;

"---

state_diagram REF_CYC_MACHINE

" This machine indicates when the DRAM controller is actually performing
" a refresh cycle.

 state IDLE:
 if (!CPU_CYC * REF_REQ) then ACTIVE;
 else IDLE;

 state ACTIVE:
 if (!RAS & MUX) then IDLE;
 else ACTIVE;

Table A-1. 33 MHz Simple DRAM Controller PLD Equations (Sheet 7 of 9)

AP-704 A

A-8

"---

state_diagram RD_MACHINE

" This machine tracks all READ cycles issued by the CPU. It assumes that
" the internal wait state generator is used, since it relies on BLAST to
" signify the end of the cycle.

 state IDLE:
 if (ADS & READ) then ACTIVE;
 else IDLE;

 state ACTIVE:
 if (BLAST) # (RESET) then IDLE;
 else ACTIVE;

"---

state_diagram REFRESH

" This machine divides the 1.8432 MHz REFCLK by 28, producing a 65 KHz
" square wave to request refesh cycles. If a higher frequency REFCLK is
" used, modify this machine accordingly. If an external 65KHz source is
" available, this machine may be eliminated. Convert node R4 into a pin
" and apply the external refresh signal to this pin

 state 0: goto 1;
 state 1: goto 2;
 state 2: goto 3;
 state 3: goto 4;
 state 4: goto 5;
 state 5: goto 6;
 state 6: goto 7;
 state 7: goto 8;
 state 8: goto 9;
 state 9: goto 10;
 state 10: goto 11;
 state 11: goto 12;
 state 12: goto 13;
 state 13: goto 14;
 state 14: goto 15;
 state 15: goto 16;
 state 16: goto 17;
 state 17: goto 18;
 state 18: goto 19;
 state 19: goto 20;
 state 20: goto 21;
 state 21: goto 22;
 state 22: goto 23;
 state 23: goto 24;
 state 24: goto 25;
 state 25: goto 26;
 state 26: goto 27;
 state 27: goto 0;
 state 28: goto 29;

Table A-1. 33 MHz Simple DRAM Controller PLD Equations (Sheet 8 of 9)

A AP-704

A-9

 state 29: goto 30;
 state 30: goto 32;
 state 31: goto 0;

"---
end

Table A-2. Signal and Product Term Allocation

OUTPUT MACROCELLS BURIED MACROCELLS

Signal Product Terms Signal Product Terms

RAS 7 CPU_CYC 3

CAS3 3 REF_REQ 2

CAS2 3 REF_CYC 3

CAS1 3 HOLDOFF 2

CAS0 3 S1 4

DRA1 3 S0 3

DRA0 3 R4 4

DRDY 2 R3 5

MUX 1 R2 4

WE 1 R1 3

RD 2 R0 2

WR 1

OE245 2

Table A-1. 33 MHz Simple DRAM Controller PLD Equations (Sheet 9 of 9)

A AP-704

B-1

APPENDIX B
IMPLEMENTATION FOR SPECIFIC PLDs

Appendix A contains device-independent programmable logic equations and fitter data. Appendix B partitions the design
into specific PLDs which are readily available and relatively inexpensive.

According to the fitter report (Table A-2, Signal and Product Term Allocation), the maximum number of product terms in
any state machine is seven. State machines like these, which need few product terms, can fit into simple PLDs.

Most of the state logic fits into PLD1, including the state machines RAS, MUX, DRDY, CPU_CYC, REF_CYC, RD and
CAS. As indicated in Table B-1, these machines share a number of input and feedback signals. In this design, address
decoding is performed externally in a 74F138 which feeds the single !DRAM input. PLD1 is a 22V10 device.

PLD2 contains the burst tracking state logic, refresh request flag and combinatorial DRAM address outputs. See Table B-
2. PLD2 is a 20V8 device.

PLD3, illustrated in Table B-3, contains the refresh counter and a combinational output enable for a 74F245 bus trans-
ceiver. In the example, a 1.8432 MHz clock is divided to generate the refresh timer output R4 for PLD1. PLD3 is a simple
16R6 device.

Partitioning the design into multiple simple PLDs was not tested on actual hardware.

Table B-1. PLD 1 Source Code Table (Sheet 1 of 3)

ABEL 5.10 - Device Utilization Chart

960CA DRAM Controller (21121)
Rick Schue Intel Corp. 11/21/94

--

Module : ‘pld1’

--

Input files:

 ABEL PLA file : pld1.tt3
 Device library : P22V10.dev

Output files:

 Report file : pld1.doc
 Programmer load file : pld1.jed

AP-704 A

B-2

P22V10 Programmed Logic:
--

RAS.D = (!ADS & !DRAM & RAS.FB & MUX & REF_REQ
 # BLAST & !RAS.FB & REF_CYC
 # DRDY & !RAS.FB & REF_CYC
 # RAS.FB & !CPU_CYC & REF_CYC
 # BLAST & !RAS.FB & !CAS0
 # DRDY & !RAS.FB & !CAS0
 # RAS.FB & !REF_CYC & !CAS0); “ ISTYPE ‘INVERT’
RAS.C = (PCLK);

MUX.D = (RAS); “ ISTYPE ‘BUFFER’
MUX.C = (PCLK);

CAS0.D = (!REF_REQ & CPU_CYC & CAS0.FB
 # RAS & !REF_CYC & !CAS0.FB
 # !RAS & !MUX & REF_CYC & CAS0.FB & !BE0); “ ISTYPE ‘INVERT’
CAS0.C = (PCLK);

CAS1.D = (!REF_REQ & CPU_CYC & CAS1.FB
 # RAS & !REF_CYC & !CAS1.FB
 # !RAS & !MUX & REF_CYC & CAS1.FB & !BE1); “ ISTYPE ‘INVERT’
CAS1.C = (PCLK);

CAS2.D = (!REF_REQ & CPU_CYC & CAS2.FB
 # RAS & !REF_CYC & !CAS2.FB
 # !RAS & !MUX & REF_CYC & CAS2.FB & !BE2); “ ISTYPE ‘INVERT’
CAS2.C = (PCLK);

CAS3.D = (!REF_REQ & CPU_CYC & CAS3.FB
 # RAS & !REF_CYC & !CAS3.FB
 # !RAS & !MUX & REF_CYC & CAS3.FB & !BE3); “ ISTYPE ‘INVERT’
CAS3.C = (PCLK);

DRDY.D = (!RAS & !MUX & REF_CYC & DRDY.FB
 # RESET & !REF_CYC & !DRDY.FB); “ ISTYPE ‘INVERT’
DRDY.C = (PCLK);

RD.D = (BLAST & RESET & !RD.FB
 # !ADS & RD.FB & !READ); “ ISTYPE ‘INVERT’
RD.C = (PCLK);

CPU_CYC.D = (CPU_CYC.FB & !ADS & !DRAM
 # !CPU_CYC.FB & BLAST & RESET
 # !CPU_CYC.FB & DRDY & RESET); “ ISTYPE ‘INVERT’
CPU_CYC.C = (PCLK);

REF_CYC.D = (REF_REQ & REF_CYC.FB
 # !CPU_CYC & REF_CYC.FB
 # RAS & !MUX & !REF_CYC.FB); “ ISTYPE ‘BUFFER’
REF_CYC.C = (PCLK);

Table B-1. PLD 1 Source Code Table (Sheet 2 of 3)

A AP-704

B-3

--

960CA DRAM Controller (21121)
Rick Schue Intel Corp. 11/21/94

P22V10 Chip Diagram:
--

 P22V10

 +---------\ /---------+
 | \ / |
 | ----- |
 PCLK | 1 24 | Vcc
 | |
 ADS | 2 23 | !RAS
 | |
 BLAST | 3 22 | !CAS3
 | |
 RESET | 4 21 | !CAS2
 | |
 DRAM | 5 20 | !CAS1
 | |
 BE0 | 6 19 | !CAS0
 | |
 BE1 | 7 18 | !DRDY
 | |
 BE2 | 8 17 | MUX
 | |
 BE3 | 9 16 | !RD
 | |
 READ | 10 15 | !CPU_CYC
 | |
 REF_REQ | 11 14 | REF_CYC
 | |
 GND | 12 13 |
 | |
 | |
 ‘---------------------------’

 SIGNATURE: N/A

Table B-1. PLD 1 Source Code Table (Sheet 3 of 3)

AP-704 A

B-4

Table B-2. PLD 2 Source Code Table (Sheet 1 of 2)

ABEL 5.10 - Device Utilization Chart

960CA DRAM Controller (21121)
Rick Schue Intel Corp. 11/21/94

--

Module : ‘pld2’

--

Input files:

 ABEL PLA file : pld2.tt3
 Device library : P20V8R.dev

Output files:

 Report file : pld2.doc
 Programmer load file : pld2.jed

P20V8R Programmed Logic:
--

DRA1 = !(!S1 & S0
 # !S1 & MUX & !A12
 # !S1 & !MUX & !A3);

DRA0 = !(S1 & !S0
 # !S0 & MUX & !A11
 # !S0 & !MUX & !A2);

WE = !(READ & REF_CYC);

WR = !(READ & !WAIT);

REF_REQ.D = (REF_CYC & !REF_REQ.FB
 # R4 & REF_REQ.FB & HOLDOFF); “ ISTYPE ‘INVERT’
REF_REQ.C = (PCLK);

HOLDOFF.D = (!REF_CYC & HOLDOFF.FB
 # !HOLDOFF.FB & R4); “ ISTYPE ‘INVERT’
HOLDOFF.C = (PCLK);

S1.D = (!A3 & !S1.FB & !S0.FB
 # A2 & !S1.FB & !S0.FB

A AP-704

B-5

 # !S1.FB & DRDY
 # !DRDY & !BLAST); “ ISTYPE ‘INVERT’
S1.C = (PCLK);

S0.D = !(S0.FB & DRDY
 # S1.FB & !DRDY & BLAST
 # !A2 & !S0.FB & !DRDY & BLAST); “ ISTYPE ‘INVERT’
S0.C = (PCLK);

P20V8R Chip Diagram:
--

 P20V8R

 +---------\ /---------+
 | \ / |
 | ----- |
 PCLK | 1 24 | Vcc
 | |
 BLAST | 2 23 | REF_CYC
 | |
 RESET | 3 22 | !S0
 | |
 A12 | 4 21 | !S1
 | |
 A11 | 5 20 | !HOLDOFF
 | |
 A3 | 6 19 | !REF_REQ
 | |
 A2 | 7 18 | !WR
 | |
 READ | 8 17 | !WE
 | |
 WAIT | 9 16 | !DRA0
 | |
 MUX | 10 15 | !DRA1
 | |
 DRDY | 11 14 | R4
 | |
 GND | 12 13 |
 | |
 | |
 ‘---------------------------’

 SIGNATURE: N/A

Table B-2. PLD 2 Source Code Table (Sheet 2 of 2)

AP-704 A

B-6

Table B-3. PLD 3 Source Code Table (Sheet 1 of 2)

ABEL 5.10 - Device Utilization Chart

960CA DRAM Controller (21121)
Rick Schue Intel Corp. 11/21/94

--

Module : ‘pld3’

--

Input files:

 ABEL PLA file : pld3.tt3
 Device library : P16R6.dev

Output files:

 Report file : pld3.doc
 Programmer load file : pld3.jed

P16R6 Programmed Logic:
--

OE245 = !(!DEN & !IO);

R4.D = (!R4.FB & !R3.FB
 # R4.FB & R3.FB & R2.FB & R1.FB
 # !R4.FB & !R1.FB
 # R3.FB & !R2.FB & R1.FB & R0.FB
 # !R4.FB & !R0.FB); “ ISTYPE ‘INVERT’
R4.C = (REFCLK);

R3.D = (!R3.FB & !R2.FB
 # !R3.FB & !R1.FB
 # R4.FB & R3.FB & R1.FB & R0.FB
 # R3.FB & R2.FB & R1.FB & R0.FB
 # !R3.FB & !R0.FB
 # R4.FB & R2.FB & R1.FB & !R0.FB); “ ISTYPE ‘INVERT’
R3.C = (REFCLK);

R2.D = (R4.FB & R3.FB & R1.FB
 # !R2.FB & !R1.FB
 # R2.FB & R1.FB & R0.FB
 # !R2.FB & !R0.FB); “ ISTYPE ‘INVERT’

R2.C = (REFCLK);

R1.D = (R1.FB & R0.FB
 # R4.FB & R3.FB & R2.FB & !R0.FB
 # !R1.FB & !R0.FB); “ ISTYPE ‘INVERT’
R1.C = (REFCLK);

R0.D = (R4.FB & R3.FB & R2.FB & R1.FB
 # R0.FB); “ ISTYPE ‘INVERT’
R0.C = (REFCLK);

P16R6 Chip Diagram:
--

 P16R6

 +---------\ /---------+
 | \ / |
 | ----- |
 REFCLK | 1 20 | Vcc
 | |
 IO | 2 19 | !OE245
 | |
 DEN | 3 18 |
 | |
 | 4 17 | !R4
 | |
 | 5 16 | !R3
 | |
 | 6 15 | !R2
 | |
 | 7 14 | !R1
 | |
 | 8 13 | !R0
 | |
 | 9 12 |
 | |
 GND | 10 11 |
 | |
 | |
 ‘---------------------------’

 SIGNATURE: N/A

Table B-3. PLD 3 Source Code Table (Sheet 2 of 2)

	Return to Index
	CoverPage
	Contents
	1.0 INTRODUCTION
	1.1 Design Goals
	1.2 Page Mode DRAM SIMM Review
	1.3 Burst Capabilities for 32-Bit Bus

	2.0 DRAM CONTROLLER OVERVIEW
	2.1 Control Logic
	2.2 Address Path
	2.3 Data Path
	2.4 SIMMS

	3.0 THEORY OF OPERATION
	4.0 STATE MACHINE DESCRIPTIONS
	4.1 RAS State Machine
	4.2 MUX State Machine
	4.3 CAS State Machines
	4.4 DRDY State Machine
	4.5 CPU_CYC State Machine
	4.6 REF_CYC State Machine
	4.7 REF_REQ State Machine
	4.8 HOLDOFF State Machine
	4.9 Burst Address (DRA0, DRA1) State Machine
	4.10 Refresh Divider State Machine
	4.11 Read Strobe State Machine

	5.0 COMBINATORIAL OUTPUTS
	5.1 I/O Write Strobe
	5.2 DRAM Write Enable
	5.3 Transceiver Control

	6.0 CONCLUSION
	7.0 RELATED INFORMATION
	APPENDIX A PLD EQUATIONS
	APPENDIX B IMPLEMENTATION FOR SPECIFIC PLDs
	FIGURES
	Figure 1. Quad-Word Access Example Showing ADS and BLAST Timings
	Figure 2. Typical DRAM Controller Design
	Figure 3. Single Word Read and Write Cycles
	Figure 4. Quad Word Read Cycle
	Figure 5. CAS-Before-RAS Refresh Cycle
	Figure 6. RAS State Machine
	Figure 7. RAS State Machine Transitions - Back-to-Back Processor Cycles
	Figure 8. RAS State Machine Transitions - Processor Cycle Delayed By Refresh
	Figure 9. RAS State Machine Transitions - Refresh Cycles
	Figure 10. MUX State Machine
	Figure 11. CAS State Machines
	Figure 12. CAS State Machine Transitions - Processor Cycle
	Figure 13. CAS State Machine Transitions - Refresh Cycles
	Figure 14. DRDY State Machine
	Figure 15. CPU_CYC State Machine
	Figure 16. CPU_CYC and DRDY State Machine Transitions
	Figure 17. REF_CYC State Machine
	Figure 18. REF_CYC Transitions Where Refresh Cycle Delays Processor Cycle
	Figure 19. REF_CYC Transitions Where Processor Cycle Delays Refresh
	Figure 20. REF_REQ State Machine
	Figure 21. REF_REQ State Machine Transitions
	Figure 22. HOLDOFF State Machine
	Figure 23. HOLDOFF State Machine Transitions
	Figure 24. DRA0, DRA1 State Machine
	Figure 25. DRA0, 1 Burst Address State Transitions
	Figure 26. RD (Read Strobe) State Machine
	Figure 27. RD State Machine Transitions
	Figure 28. W/R Strobe Generation
	Figure 29. Transceiver OE Generation

	TABLES
	Table A-1. 33 MHz Simple DRAM Controller PLD Equations (Sheet 1 of 9)
	Table A-2. Signal and Product Term Allocation
	Table B-1. PLD 1 Source Code Table (Sheet 1 of 3)
	Table B-2. PLD 2 Source Code Table (Sheet 1 of 2)
	Table B-3. PLD 3 Source Code Table (Sheet 1 of 2)

